Search results for " 18D50"

showing 2 items of 2 documents

Deformation Quantization: Genesis, Developments and Metamorphoses

2002

We start with a short exposition of developments in physics and mathematics that preceded, formed the basis for, or accompanied, the birth of deformation quantization in the seventies. We indicate how the latter is at least a viable alternative, autonomous and conceptually more satisfactory, to conventional quantum mechanics and mention related questions, including covariance and star representations of Lie groups. We sketch Fedosov's geometric presentation, based on ideas coming from index theorems, which provided a beautiful frame for developing existence and classification of star-products on symplectic manifolds. We present Kontsevich's formality, a major metamorphosis of deformation qu…

High Energy Physics - TheoryMSC-class: 53D55 53-02 81S10 81T70 53D17 18D50 22Exx[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences01 natural sciences[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]53D55 53-02 81S10 81T70 53D17 18D50 22Exx[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics - Quantum Algebra0103 physical sciencesFOS: MathematicsQuantum Algebra (math.QA)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsMathematical Physics[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA][ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]16. Peace & justiceQuantum AlgebraHigh Energy Physics - Theory (hep-th)[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph][PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]
researchProduct

Polynomial functors and polynomial monads

2009

We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.

Pure mathematicsPolynomialFunctorGeneral MathematicsMathematics - Category Theory18C15 18D05 18D50 03G30517 - AnàlisiMonad (functional programming)BicategoryMathematics::Algebraic TopologyCartesian closed categoryMathematics::K-Theory and HomologyMathematics::Category TheoryPolynomial functor polynomial monad locally cartesian closed categories W-types operadsFOS: MathematicsPolinomisCategory Theory (math.CT)Mathematics
researchProduct